

Optimizing Parallel Reduction in CUDA

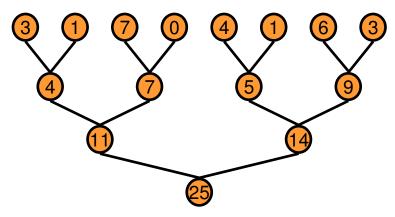
Mark Harris
NVIDIA Developer Technology

Parallel Reduction

- Common and important data parallel primitive
- Easy to implement in CUDA
 - Harder to get it right
- Serves as a great optimization example
 - We'll walk step by step through 7 different versions
 - Demonstrates several important optimization strategies

Parallel Reduction

Tree-based approach used within each thread block



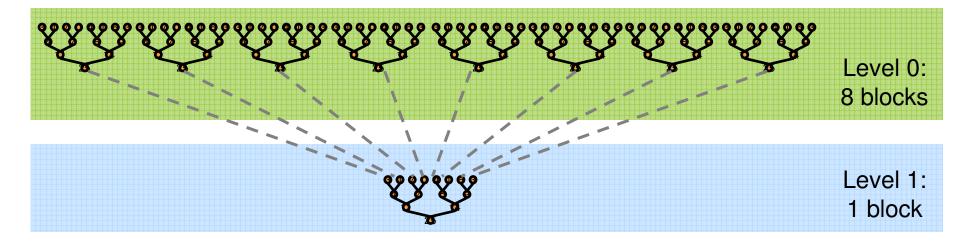
- Need to be able to use multiple thread blocks
 - To process very large arrays
 - To keep all multiprocessors on the GPU busy
 - Each thread block reduces a portion of the array
- But how do we communicate partial results between thread blocks?

Problem: Global Synchronization

- If we could synchronize across all thread blocks, could easily reduce very large arrays, right?
 - Global sync after each block produces its result
 - Once all blocks reach sync, continue recursively
- But CUDA has no global synchronization. Why?
 - Expensive to build in hardware for GPUs with high processor count
 - Would force programmer to run fewer blocks (no more than # multiprocessors * # resident blocks / multiprocessor) to avoid deadlock, which may reduce overall efficiency
- Solution: decompose into multiple kernels
 - Kernel launch serves as a global synchronization point
 - Kernel launch has negligible HW overhead, low SW overhead

Solution: Kernel Decomposition

Avoid global sync by decomposing computation into multiple kernel invocations



- In the case of reductions, code for all levels is the same
 - Recursive kernel invocation

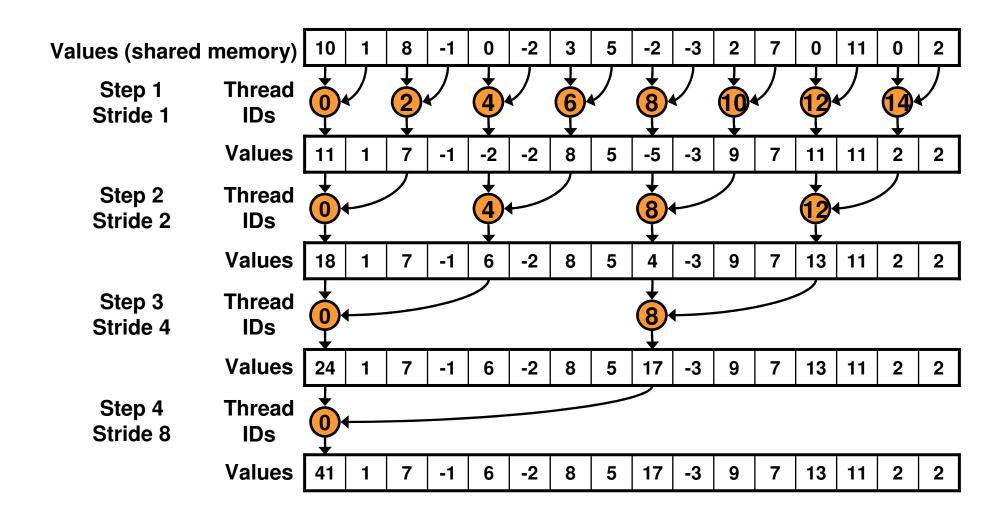
What is Our Optimization Goal?

- We should strive to reach GPU peak performance
- Choose the right metric:
 - GFLOP/s: for compute-bound kernels
 - Bandwidth: for memory-bound kernels
- Reductions have very low arithmetic intensity
 - 1 flop per element loaded (bandwidth-optimal)
- Therefore we should strive for peak bandwidth
- Will use G80 GPU for this example
 - 384-bit memory interface, 900 MHz DDR
 - 384 * 1800 / 8 = 86.4 GB/s

Reduction #1: Interleaved Addressing


```
global void reduce0(int *g idata, int *g odata) {
extern shared int sdata[];
// each thread loads one element from global to shared mem
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*blockDim.x + threadldx.x;
sdata[tid] = q idata[i];
  _syncthreads();
// do reduction in shared mem
for(unsigned int s=1; s < blockDim.x; s *= 2) {
  if (tid % (2*s) == 0) {
     sdata[tid] += sdata[tid + s];
     _syncthreads();
                         Needed to make sure that sdata[tid] is written to shared memory so for the next
                         iteration in s, it is available. Else the compiler may leave it in register as an
                         optimization.
// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];
```

Parallel Reduction: Interleaved Addressing



Reduction #1: Interleaved Addressing


```
__global___ void reduce1(int *g_idata, int *g_odata) {
    extern __shared__ int sdata[];

// each thread loads one element from global to shared mem
    unsigned int tid = threadldx.x;
    unsigned int i = blockldx.x*blockDim.x + threadldx.x;
    sdata[tid] = g_idata[i];
    __syncthreads();
```

```
// do reduction in shared mem

for (unsigned int s=1; s < blockDim.x; s *= 2) {

    if (tid % (2*s) == 0) {
        sdata[tid] += sdata[tid + s];
    }

    __syncthreads();
}

// do reduction in shared mem

for (unsigned int s=1; s < blockDim.x; s *= 2) {

    Problem: highly divergent branching results in very poor performance!
```

```
// write result for this block to global mem
if (tid == 0) g_odata[blockldx.x] = sdata[0];
```

Compiler has less leeway to optimize away non-working threads (via predication)

Performance for 4M element reduction

Time (2²² ints)

Bandwidth

Kernel 1:

8.054 ms

2.083 GB/s

interleaved addressing with divergent branching

Note: Block Size = 128 threads for all tests

Reduction #2: Interleaved Addressing

Just replace divergent branch in inner loop:

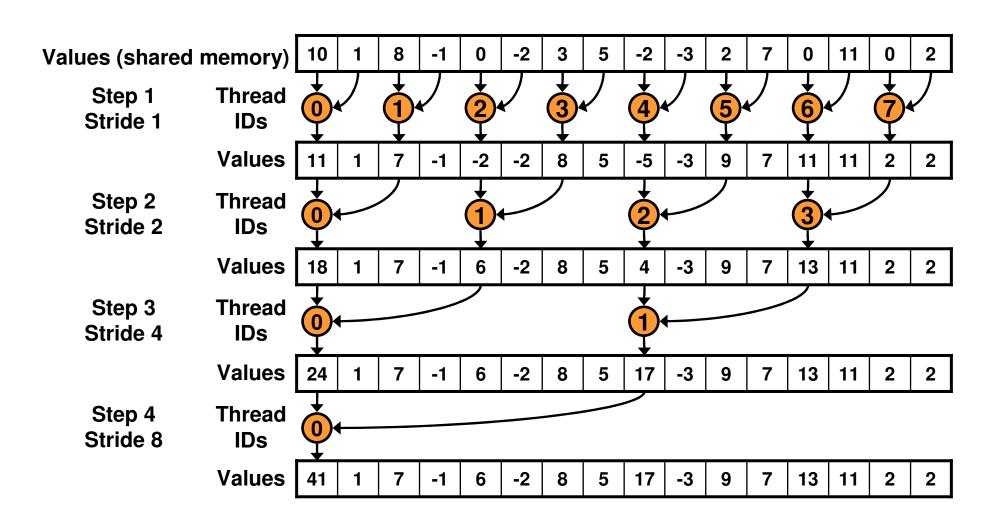
```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
   if (tid % (2*s) == 0) {
      sdata[tid] += sdata[tid + s];
   }
   __syncthreads();
}</pre>
```

With strided index and non-divergent branch:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
   int index = 2 * s * tid;

   if (index < blockDim.x) {
      sdata[index] += sdata[index + s];
   }
   __syncthreads();
}</pre>
```

Parallel Reduction: Interleaved Addressing

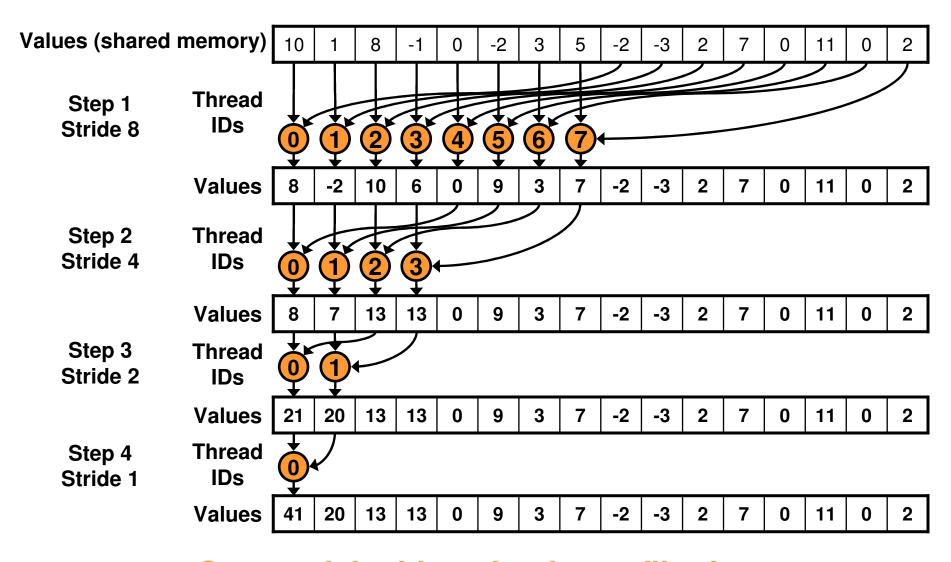


New Problem: Shared Memory Bank Conflicts

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x

Parallel Reduction: Sequential Addressing



Reduction #3: Sequential Addressing

Just replace strided indexing in inner loop:

```
for (unsigned int s=1; s < blockDim.x; s *= 2) {
   int index = 2 * s * tid;

if (index < blockDim.x) {
     sdata[index] += sdata[index + s];
   }
   __syncthreads();
}</pre>
```

With reversed loop and threadID-based indexing:

```
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}</pre>
```

less of a problem for newer hardware that has 32 memory banks (the size of a warp)

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x

Idle Threads

Problem:

```
for (unsigned int s=blockDim.x/2; s>0; s>>=1) {
    if (tid < s) {
        sdata[tid] += sdata[tid + s];
    }
    __syncthreads();
}</pre>
```

Half of the threads are idle on first loop iteration!

This is wasteful...

Reduction #4: First Add During Load

Halve the number of blocks, and replace single load:

```
// each thread loads one element from global to shared mem unsigned int tid = threadldx.x; unsigned int i = blockldx.x*blockDim.x + threadldx.x; sdata[tid] = g_idata[i]; __syncthreads();
```

With two loads and first add of the reduction:

```
// perform first level of reduction,

// reading from global memory, writing to shared memory
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x

Instruction Bottleneck

- At 17 GB/s, we're far from bandwidth bound
 - And we know reduction has low arithmetic intensity
- Therefore a likely bottleneck is instruction overhead
 - Ancillary instructions that are not loads, stores, or arithmetic for the core computation
 - In other words: address arithmetic and loop overhead
- Strategy: unroll loops

Unrolling the Last Warp

- As reduction proceeds, # "active" threads decreases
 - When s <= 32, we have only one warp left</p>
- Instructions are SIMD synchronous within a warp
- That means when s <= 32:</p>
 - We don't need to __syncthreads()
 - We don't need "if (tid < s)" because it doesn't save any work
- Let's unroll the last 6 iterations of the inner loop

Reduction #5: Unroll the Last Warp


```
for (unsigned int s=blockDim.x/2; s>32; s>>=1)
  if (tid < s)
     sdata[tid] += sdata[tid + s];
    syncthreads();
if (tid < 32)
  sdata[tid] += sdata[tid + 32];
  sdata[tid] += sdata[tid + 16];
  sdata[tid] += sdata[tid + 8];
  sdata[tid] += sdata[tid + 4];
  sdata[tid] += sdata[tid + 2];
  sdata[tid] += sdata[tid + 1];
```

Note: This saves useless work in *all* warps, not just the last one! Without unrolling, all warps execute every iteration of the for loop and if statement

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x

Complete Unrolling

- If we knew the number of iterations at compile time, we could completely unroll the reduction
 - Luckily, the block size is limited by the GPU to 512 threads
 - Also, we are sticking to power-of-2 block sizes
- So we can easily unroll for a fixed block size
 - But we need to be generic how can we unroll for block sizes that we don't know at compile time?
- Templates to the rescue!
 - CUDA supports C++ template parameters on device and host functions

Unrolling with Templates

Specify block size as a function template parameter:

```
template <unsigned int blockSize>
__global__ void reduce5(int *g_idata, int *g_odata)
```

Reduction #6: Completely Unrolled


```
if (blockSize >= 512) {
  if (tid < 256) { sdata[tid] += sdata[tid + 256]; } __syncthreads();</pre>
if (blockSize >= 256) {
  if (tid < 128) { sdata[tid] += sdata[tid + 128]; } __syncthreads();</pre>
if (blockSize >= 128) {
  if (tid < 64) { sdata[tid] += sdata[tid + 64]; } __syncthreads();</pre>
if (tid < 32) {
  if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
  if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
  if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
  if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
  if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
  if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
```

Note: all code in RED will be evaluated at compile time.

Invoking Template Kernels

- Don't we still need block size at compile time?
 - Nope, just a switch statement for 10 possible block sizes:

```
switch (threads)
    case 512:
      reduce5<512><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 256:
      reduce5<256><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 128:
      reduce5<128><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 64:
      reduce5< 64><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 32:
      reduce5< 32><< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 16:
      reduce5< 16><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 8:
      reduce5< 8><< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 4:
      reduce5< 4><< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 2:
      reduce5< 2><< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
    case 1:
      reduce5< 1><<< dimGrid, dimBlock, smemSize >>>(d idata, d odata); break;
```

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x

Parallel Reduction Complexity

- Log(N) parallel steps, each step S does N/2^S independent ops
 - Step Complexity is O(log M)
- \bigcirc For $N=2^D$, performs $\sum_{S \in [1...D]} 2^{D-S} = N-1$ operations
 - **○** Work Complexity is O(N) It is work-efficient
 - i.e. does not perform more operations than a sequential algorithm
- With P threads physically in parallel (P processors), time complexity is O(N/P + log N)
 - Compare to O(N) for sequential reduction
 - In a thread block, N=P, so O(log N)

What About Cost?

- Cost of a parallel algorithm is processors x time complexity
 - Allocate threads instead of processors: O(N) threads
 - Time complexity is O(log N), so cost is O(N log N): not cost efficient!
- Brent's theorem suggests O(N/log N) threads
 - Each thread does O(log N) sequential work
 - Then all O(N/log N) threads cooperate for O(log N) steps
 - Cost = $O((N/\log N) * \log N) = O(N) \rightarrow cost efficient$
- Sometimes called algorithm cascading
 - Can lead to significant speedups in practice

Algorithm Cascading

- Combine sequential and parallel reduction
 - Each thread loads and sums multiple elements into shared memory
 - Tree-based reduction in shared memory
- Brent's theorem says each thread should sum O(log n) elements
 - i.e. 1024 or 2048 elements per block vs. 256
- In my experience, beneficial to push it even further
 - Possibly better latency hiding with more work per thread
 - More threads per block reduces levels in tree of recursive kernel invocations
 - High kernel launch overhead in last levels with few blocks
- On G80, best perf with 64-256 blocks of 128 threads
 - 1024-4096 elements per thread

Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

```
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

With a while loop to add as many as necessary:

```
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockSize*2) + threadldx.x;
unsigned int gridSize = blockSize*2*gridDim.x;
sdata[tid] = 0;

while (i < n) {
    sdata[tid] += g_idata[i] + g_idata[i+blockSize];
    i += gridSize;
}
__syncthreads();</pre>
```

Reduction #7: Multiple Adds / Thread

Replace load and add of two elements:

```
unsigned int tid = threadldx.x;
unsigned int i = blockldx.x*(blockDim.x*2) + threadldx.x;
sdata[tid] = g_idata[i] + g_idata[i+blockDim.x];
__syncthreads();
```

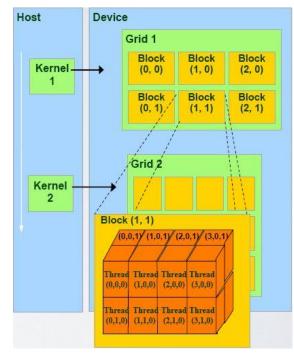
With a while loop to add as many as necessary:

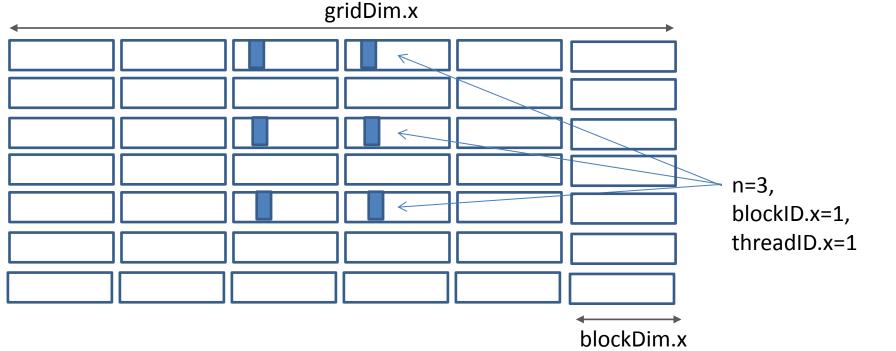
Reduction #7: Multiple Adds / Thread – Illustration

Recap of definitions:

dim3 gridDim;

- dimensions of the grid in blocks (gridDim.z unused) dim3 blockDim;
- dimensions of the block in threads dim3 blockldx;
- block index within the grid dim3 threadIdx;
- thread index within the block





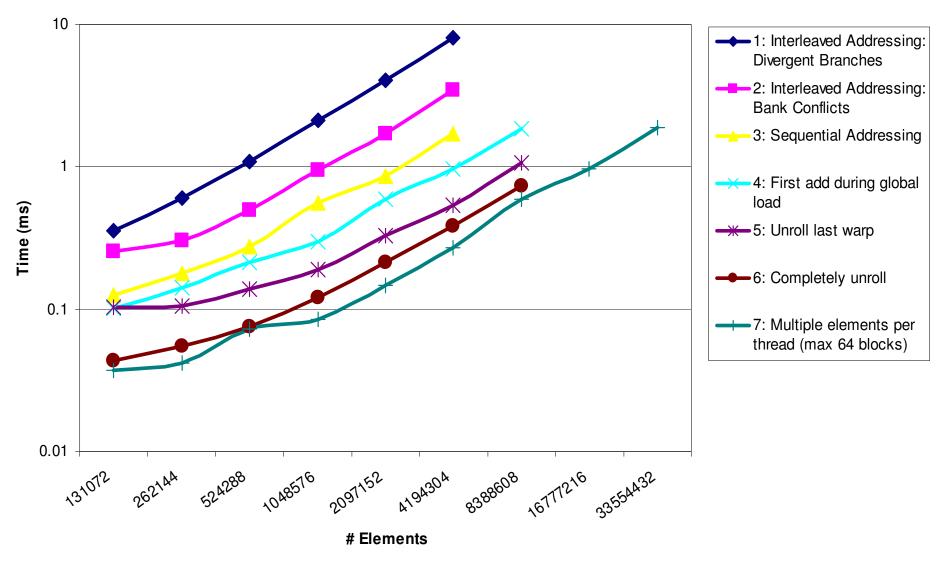
Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing with bank conflicts	3.456 ms	4.854 GB/s	2.33x	2.33x
Kernel 3: sequential addressing	1.722 ms	9.741 GB/s	2.01x	4.68x
Kernel 4: first add during global load	0.965 ms	17.377 GB/s	1.78x	8.34x
Kernel 5: unroll last warp	0.536 ms	31.289 GB/s	1.8x	15.01x
Kernel 6: completely unrolled	0.381 ms	43.996 GB/s	1.41x	21.16x
Kernel 7: multiple elements per thread	0.268 ms	62.671 GB/s	1.42x	30.04x

Kernel 7 on 32M elements: 73 GB/s!

```
template <unsigned int blockSize>
  global void reduce6(int *g idata, int *g odata, unsigned int n)
  extern shared int sdata[];
  unsigned int tid = threadldx.x;
                                                            Final Optimized Kernel
  unsigned int i = blockldx.x*(blockSize*2) + tid;
  unsigned int gridSize = blockSize*2*gridDim.x;
  sdata[tid] = 0;
  while (i < n) { sdata[tid] += g_idata[i] + g_idata[i+blockSize]; i += gridSize; }
   syncthreads();
  if (blockSize >= 512) { if (tid < 256) { sdata[tid] += sdata[tid + 256]; } syncthreads(); }
  if (blockSize >= 256) { if (tid < 128) { sdata[tid] += sdata[tid + 128]; } syncthreads(); }
  if (blockSize >= 128) { if (tid < 64) { sdata[tid] += sdata[tid + 64]; } syncthreads(); }
  if (tid < 32) {
    if (blockSize >= 64) sdata[tid] += sdata[tid + 32];
    if (blockSize >= 32) sdata[tid] += sdata[tid + 16];
    if (blockSize >= 16) sdata[tid] += sdata[tid + 8];
    if (blockSize >= 8) sdata[tid] += sdata[tid + 4];
    if (blockSize >= 4) sdata[tid] += sdata[tid + 2];
    if (blockSize >= 2) sdata[tid] += sdata[tid + 1];
  if (tid == 0) q odata[blockldx.x] = sdata[0];
                                                                                         35
}
```

Performance Comparison



Types of optimization

- Interesting observation:
- Algorithmic optimizations
 - Changes to addressing, algorithm cascading
 - 11.84x speedup, combined!
- Code optimizations
 - Loop unrolling
 - 2.54x speedup, combined

Conclusion

- Understand CUDA performance characteristics
 - Memory coalescing
 - Divergent branching
 - Bank conflicts
 - Latency hiding
- Use peak performance metrics to guide optimization
- Understand parallel algorithm complexity theory
- Know how to identify type of bottleneck
 - e.g. memory, core computation, or instruction overhead
- Optimize your algorithm, then unroll loops
- Use template parameters to generate optimal code
- Questions: mharris@nvidia.com